

ELite H360 Lyse Instrução de Uso

REF	HEM00029	Elite H360 Lyse	500 mL

FINALIDADE DE USO

ELite H360 Lyse é um reagente de lise usado para lisar hemácias, determinando a hemoglobina, a classificação dos leucócitos e contagem do número total de leucócitos nos equipamentos hematológicos ELite H360.

Uso em diagnóstico in vitro.

DESCRIÇÃO DO PRODUTO

A solução ELite H360 Lyse é um reagente de lise de células sanguíneas.

Consulte o manual do usuário do equipamento ELite H360 para obter mais informações.

COMPONENTES DO REAGENTE

Componente	[%]
Brometo de dodeciltrimetilamônio	<2.0%
Tampão	>98.0%
Antimicrobiano	<0.001%

PRINCÍPIO DE FUNCIONAMENTO

A solução ELite H360 Lyse é um reagente de lise utilizado em análises hematológicas.

O equipamento detecta a contagem de leucócitos, hemácias e plaquetas e sua distribuição de volume por método de impedância e, eventualmente, obtém os resultados dos parâmetros relacionados.

Os princípios de medição para os parâmetros analisados estão descritos abaixo.

Método Colorimétrico

A hemoglobina (HGB) é determinada por método colorimétrico. O diluente é entregue no banho de hemoglobina, onde é misturado com uma certa quantidade de reagente de lise, que converte a hemoglobina em um complexo de hemoglobina que é mensurável em 525 nm. Um LED é montado em um lado do banho e emite um feixe de luz monocromática com um comprimento de onda central de 525 nm. A luz passa através da amostra e é então medida por um sensor óptico montado no lado oposto. O sinal é então amplificado e a tensão é medida e comparada com a leitura de referência em branco (leituras feitas quando há apenas diluente no banho).

A hemoglobina (HGB) é calculada usando a seguinte equação expressa em g/L.

HGB (g/L) = constante x Ln x

leitura Branco leitura Amostra

Método de Impedância Elétrica

Leucócitos, hemácias e plaquetas são contados e dimensionados pelo método de Impedância Elétrica. Este método baseia-se na medição de alterações na resistência elétrica produzida por uma partícula, que neste caso é uma célula sanguínea, suspensa em um diluente condutor ao passar por uma abertura de dimensões conhecidas. Um eletrodo é submerso no líquido em ambos os lados da abertura para criar um caminho elétrico. Conforme cada partícula passa pela abertura, uma mudança transitória na resistência entre os eletrodos é produzida. Essa alteração produz um pulso elétrico mensurável. O número de pulsos assim gerados é igual ao número de partículas que passaram pela abertura. A amplitude de cada pulso é proporcional ao volume de cada partícula. Cada pulso é amplificado e comparado ao canal de tensão de referência interno, que aceita apenas os pulsos de uma determinada amplitude. Se o pulso gerado estiver acima do valor limite inferior de leucócitos, hemácias e plaquetas, será contado como leucócitos, hemácias e plaquetas. É apresentado histograma, onde a coordenada \mathbf{x} representa o volume da célula (fL) e a coordenada y representa o número das células. Derivação de Parâmetros Relacionados com leucócitos

Os leucócitos têm uma variedade de tipos e podem ser categorizados de acordo com seu volume. O volume de cada tipo de célula varia com o tipo de diluente e solução de lise usado e, também, o tempo de lise. Com a ação dos reagentes, os leucócitos podem ser classificados em três grupos, de pequeno volume a grande volume: linfócitos, células de tamanho médio (incluindo monócitos, eosinófilos e basófilos) e granulócitos.

Com base no diagrama de dispersão e na análise da região Lym (linfócitos), região Mid (células médias), e região Gran (granulócitos), são calculadas as porcentagens Lym%, Mid% e Gran%. Após a medição leucócitos, os cálculos Lym#, Mid# e Gran# são realizados pelas seguintes equações. A unidade do nº de células é 10³/µL.

• Contagem de leucócitos (WBC)

WBC é o número de leucócitos medidos diretamente pela contagem dos leucócitos que passam pela abertura.

Porcentagem de Linfócitos (Lym%)

Porcentagem de células médias (Mid%)

• Porcentagem de granulócitos (Gran%)

Número de linfócitos (Lym#)

Lym# = WBC x Lym%

Número de células médias (Mid#)

Mid# = WBC x Mid%

Número de granulócitos (Gran#)

Gran# = WBC x Gran%

Contagem de hemácias (RBC)

RBC (10⁶/µL) é o número de eritrócitos mensurados diretamente pela contagem dos eritrócitos que passam pela abertura.

Volume corpuscular médio (MCV)

Baseado no histograma RBC, este equipamento calcula o MCV e expressa o resultado em fL.

 Hematócrito (HCT), Hemoglobina Corpuscular Média (MCH), Concentração de Hemoglobina Corpuscular Média (MCHC)

É calculado o HCT (%), MCH (pg) e MCHC (g/dL) como se segue, onde o RBC é expresso em 10 $^6/\mu$ L, o MCV em fL e o HGB em g/dL.

$$\begin{aligned} & \text{HCT} = & \frac{\text{RBC} \times \text{MCV}}{10} \\ & \text{MCH} = & \frac{\text{HGB}}{\text{RBC}} \\ & \text{MCHC} = & \frac{\text{HGB}}{\text{HCT}} \times 100\% \end{aligned}$$

 Coeficiente de variação da faixa de distribuição de hemácias (RDW-CV)

Com base no histograma RBC, este equipamento calcula o CV (coeficiente de variação, %) da faixa de distribuição do eritrócito.

 Desvio padrão da faixa de distribuição de hemácias (RDW-SD)

O RDW-SD (Desvio Padrão da faixa de distribuição de RBC, fL) é obtido calculando-se o desvio padrão da distribuição do tamanho de hemácias.

Contagem de plaquetas (PLT, 10³/μL)

A PLT é mensurada diretamente pela contagem das plaquetas que passam pela abertura.

- Volume Médio de Plaquetas (MPV, fL)

 Baseado no histograma PLT, este equipamento calcula o MPV.
- Faixa de Distribuição de Plaquetas (PDW)
 PDW é o desvio padrão geométrico (GSD) da distribuição do
 tamanho das plaquetas. Cada resultado PDW é derivado a
 partir dos dados do histograma de plaquetas e é reportado
 como 10 (GSD).

Plaquetócrito (PCT)

Este equipamento calcula o PCT da seguinte forma e é expresso em %, em que o PLT é expresso em $10^9/L$ e o MPV em fL.

$$PCT = \frac{PLT \times MPV}{10.000}$$

 Contagem de Partículas Grandes de Plaquetas (P-LCC, 10⁹/L)

O P-LCC é mensurado diretamente pela contagem das partículas grandes de plaquetas que passam pela abertura.

• Razão de Partículas Grandes de Plaquetas (P-LCR)

$$P-LCR = \frac{P-LCC}{PLT} \times 100\%$$

INTERFERENTES/LIMITAÇÕES

Se houver interferentes na amostra, os resultados da análise da amostra podem ser afetados. Veja a tabela a seguir.

Parâmetro	Resultado	Fonte da Interferência	
	da Análise		
	Contagem baixa de leucócitos	-Leucoaglutinação	
WBC	Contagem alta de leucócitos	-Possível aglutinação de plaquetas -Proteínas frescas insolúveis -Crioglobulinas -Fibrinas -Número excessivo de plaquetas gigantes (plaquetas> 1000×10³/µL) -Hemácias nucleados	
nnc.	Contagem baixa de hemácias	-Hemácias aglutinadas (aglutininas frias) -Microcitemia -Esquistócitos	
RBC	Contagem alta de hemácias	-Leucocitose (> 100 × 103/μL) -Número excessivo de plaquetas gigantes (plaquetas> 1000×103/μL)	
HGB	Contagem alta de hemoglobina	-Leucocitose (> 100 × 103/μL) -Chilemia -Icterícia -Paraproteína	
нст	Valor de hematócrito baixo	-Hemácias aglutinadas (aglutininas frias) -Micrócitos -Esquistócitos	
nci	Valor de hematócrito alto	-Leucocitose (> 100 × 103/μL) -Diabetes grave -Uremia -Esferócitos	
PLT	Contagem baixa de plaquetas	-Possível aglutinação de plaquetas -Pseudo trombocitopenia -Plaquetas gigantes	
	Contagem alta de plaquetas	-Micrócitos -Esquistócitos -Fragmentos de leucócitos -Proteína insolúvel fresca -Crioglobulinas	

CALIBRAÇÃO

O equipamento ELite H360 vem calibrado de fábrica. É eletronicamente estável e não requer recalibração frequente se você o operar e mantê-lo conforme as instruções do Manual do Usuário do equipamento ELite H360.

Você só precisa recalibrar este equipamento se:

- Um componente analítico foi alterado.
- Você vai reutilizar o equipamento após um armazenamento de longo período.
- Os resultados do controle de qualidade indicam que pode haver um problema.

Caso seja necessário recalibrar o equipamento, entre em contato com a Erba Diagnostics Brazil.

DESEMPENHO

Faixa de exibição

Parâmetro	Faixa de linearidade	Faixa de exibição
WBC	(0.00~300)×109/L	(0.00~999.99)×109/L
RBC	(0.00~8.50)×10 ¹² /L	(0.00~18.00)×10 ¹² /L
HGB	0~250g/L	0~300g/L
PLT	(0~3000)×10 ⁹ /L	(0~5000)×109/L
HCT	0~67%	0~80%

Valores normais de Background

Parâmetro	Resultado de Background
WBC	≤0.2 × 10 ⁹ /L
RBC	≤0.02 × 10 ¹² /L
HGB	≤1 g/L
PLT	≤10 × 10 ⁹ /L
HCT	≤0.5%

Intervalo de Linearidade

Parâmetro	Faixa de linearidade	Faixa de desvio (modo Sangue total)
WBC	(0.00~100.00)×109/L	±0.50×10 ⁹ /L ou ±5%
WBC	(100.01~300.00)×10 ⁹ /L	±10%
RBC	(0.00~8.50)×10 ¹² /L	±0.05×10 ¹² /L ou ±5%
HGB	(0~250) g/L	±2 g/L ou ±2%
PLT	(0~1000)×10 ⁹ /L (RBC≤7.0)	±10×10 ⁹ L ou ±8%
	(1001~3000)×10 ⁹ /L (RBC≤7.0)	±12%
НСТ	0~67%	±2% (valor HCT) ou ±3% (desvio)

Repetibilidade

Parâmetro	Condição	Repetibilidade de Sangue total (CV%/desvio absoluto d*)
WBC	(4.0~15.0)×109/L	≤2.0%
Neu%	50.0%~60.0%	±4.0 (desvio absoluto)
Lym%	25.0%~35.0%	±3.0 (desvio absoluto)
Mon%	5.0%~10.0%	±2.0 (desvio absoluto)
Eos%	2.0%~5.0%	±1.5 (desvio absoluto)
Bas%	0.5%~1.5%	±0.8 (desvio absoluto)
RBC	(3.50~6.00)×10 ¹² /L	≤1.5%
HGB	(110~180) g/L	≤1.5%
PLT	(150~500)×109/L	≤4.0%
MCV	(70~120) fL	≤1.0%

*desvio absoluto d = resultado da análise – média do resultado da análise

Carryover

Parâmetro	Carryover
WBC	≤0.5%
RBC	≤0.5%
HGB	≤0.5%
PLT	≤1.0%
HCT	≤0.5%

REAGENTES, CONTROLES E CALIBRADORES

Os reagentes a seguir também são necessários para a realização do ensaio.

- Diluente ELite H360 Dil: diluição da amostra e preparação da suspensão de células.
- Solução de limpeza ELite H-Clean: limpeza do sistema de fluidos do equipamento e à limpeza regular do equipamento.
- Controles ELite H3 CON: controle de qualidade do equipamento.
- Calibrador ELite H CAL: calibração do equipamento.

CONTROLE INTERNO DA QUALIDADE

O Controle de Qualidade (QC) consiste em estratégias e procedimentos que medem a precisão e a estabilidade do

equipamento. Os resultados implicam na confiabilidade dos resultados da amostra. A Erba Lachema recomenda executar o programa QC diariamente com controles níveis baixo, normal e alto. Consulte o Manual do Usuário do equipamento ELite H360 para ver como proceder.

ATENÇÃO: O desempenho do sensor do equipamento pode ser afetado pelo uso de outros controles que não sejam os especificados pela Erba Lachema.

INTERVALOS DE REFERÊNCIA

Parâmetro	Unidade	Limite inferior	Limite superior
WBC	10³/uL	4.00	10.0
Neu%	%	50.0	70.0
Lym%	%	20.0	40.0
Mon%	%	3.0	12.0
Eos%	%	0.5	5.0
Bas%	%	0.0	1.0
Neu#	10³/uL	2.0	7.00
Lym#	10³/uL	0.80	4.00
Mon#	10³/uL	0.12	1.20
Eos#	10³/uL	0.02	0.50
Bas#	10³/uL	0.00	0.10
ALY%	%	0.0	2.0
LIC%	%	0.0	2.5
ALY#	10³/uL	0.00	0.20
LIC#	10³/uL	0.00	0.20
RBC	10³/uL	3.50	5.50
HGB	g/dL	11.0	16.0
HCCT	%	37.0	54.0
MCV	fL	80.0	100.0
MCH	pg	27.0	34.0
MCHC	g/dL	32.0	36.0

PRECAUÇÕES DE MANUSEIO

O reagente contém brometo de dodeciltrimetilamônio.

Tóxico para a vida aquática com efeitos de longa duração.

Não descartar no meio ambiente.

- -Deve ser manuseado apenas por profissionais de saúde devidamente treinados.
- -Evite o contato com os olhos, pele e roupas.
- -Não respirar os vapores.
- -Use luvas de proteção / roupa de proteção / proteção ocular / proteção facial (EPIs).
- -Em caso de inalação ou ingestão, consulte imediatamente um médico.
- -Em caso de ingestão: enxaguar a boca. NÃO induzir o vômito.
- -Em caso de contato com a pele (ou cabelo), retirar imediatamente toda a roupa contaminada e lavar a área afetada com água (chuveiro).
- -Em caso de contato com os olhos, lavar, cuidadosamente, com água em abundância por alguns minutos. Remova as lentes de contato, se presentes e fáceis de retirar. Continue enxaguando.
- -Mantenha o recipiente do reagente fechado quando não estiver em uso.

COLETA E PREPARAÇÃO DE AMOSTRAS

- -O reagente de lise ELite H60 Lyse destina-se a ser utilizada em amostras de sangue recolhidas, por punção venosa ou capilar, com anticoagulante EDTA.
- -As amostras para análise hematológica podem ser armazenadas por até 8 horas em temperaturas entre 15 e 30 $^{\circ}\text{C}$ ou até 24 horas após a coleta quando armazenadas em temperaturas entre 2 e 8 $^{\circ}\text{C}.$

Todas as amostras de fluidos corporais devem ser consideradas materiais potencialmente infecciosos. Trate todo o sangue e outros materiais potencialmente infecciosos com as devidas precauções. Use luvas, máscaras e aventais ao manusear amostras de sangue.

PREPARAÇÃO DOS REAGENTES

- -Este reagente está pronto para uso e pode ser utilizado diretamente do frasco; não é necessária nenhuma preparação especial do reagente.
- -Antes de usar, deixe o reagente em temperatura ambiente por pelo menos 24 horas.
- -Se o produto foi congelado (parcial ou completamente), deixe o produto atingir à temperatura ambiente antes de homogeneizar. Misture o produto por inversão suave. Verifique os resultados de *background* antes de analisar as amostras do paciente.
- -Cada embalagem de reagente deve ser examinada antes do uso. Inspecione a embalagem em busca de sinais de vazamento ou umidade. A integridade do produto pode estar comprometida em pacotes que foram danificados. Se houver evidência de vazamento ou manuseio inadequado, não use o reagente.

INSTALAÇÃO/SUBSTITUIÇÃO DO REAGENTE

- -A pessoa que irá instalar o reagente deve ser um profissional do laboratório previamente treinado.
- 1- Remova a tampa do frasco do reagente a ser instalado/substituído. Conectar a entrada de reagente do equipamento ao novo frasco de reagente.
- 2- Certifique-se de que a cor em cada tubo, a etiqueta do frasco de reagente e o conector na parte traseira do equipamento combinam.
- 3- Cuidado com poeira ou contaminação microbiana proveniente da tubulação e dos reagentes. Não misture os restos de um reagente de um frasco para o outro frasco.
- 4- Prenda completamente o novo reagente e meça os fundos de acordo com o Manual do Usuário do equipamento ELite H360.

Ao instalar um novo lote de reagente, consultar o Manual do Usuário do equipamento ELite H360.

ARMAZENAMENTO, ESTABILIDADE E DISPOSIÇÃO DOS REAGENTES

- -Armazene o reagente de lise ELite H360 Lyse entre 2 e 30 °C
- -O prazo de validade do reagente de lise ELite H360 Lyse é de 2 anos a partir da data de fabricação, quando armazenado na faixa de temperatura prescrita.
- -Não use o produto após a data de vencimento.
- -O prazo de validade em uso do reagente de lise ELite H360 Lyse é de 60 dias. Descartar o recipiente aberto após este prazo.

TRANSPORTE

O produto não é afetado pelo transporte desde que o mesmo seja entregue ao destinatário nas condições de temperatura descritas.

DESCARTE

-Elimine produtos não utilizados, embalagens contaminadas e resíduos do produto conforme regulamentos locais, estaduais e federais.

PRECAUÇÕES E CUIDADOS ESPECIAIS

- -Para obtenção de informações relacionadas à biossegurança ou em caso de acidentes com o produto, consultar as FISPQ (Ficha de Informações de Segurança de Produtos Químicos) disponibilizadas pela Erba Diagnostics Brazil.
- -Devem ser seguidas as Boas Práticas de Laboratório para a manipulação de amostras, controles, calibradores e reagentes.
- -Consulte o Manual do Usuário do equipamento ELite H360 para obter instruções completas.

INFORMAÇÕES AO CONSUMIDOR/TERMOS E CONDIÇOES DE GARANTIA

A Erba Diagnostics Brazil garante a boa qualidade do produto, desde que os cuidados de armazenamento indicado nos rótulos e nestas instruções sejam seguidos corretamente.

Em caso de problemas com o produto, o cliente deverá entrar em contato com a Erba Diagnostics Brazil.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Clinical Laboratory Standards Institute. Reference and Selected Procedures for Quantitative Determination of Hemoglobin in Blood: Appoved Standard-Third Edition. CLS document H15-A3.
- 2. Clinical Laboratory Standards Institute. Procedure for Determining Packed Cell Volume by Microhematocrit Metod: Appoved Standard-Third Edition. CLS document H07-A3.
- 3. ISO 13485:2016
- 4. ISO 14971:2012
- 5. ISO 15193:2009
- 6. ISO 15194: 2009
- 7. ISO 15223-1:2017
- 8. ISO 17511:2004
- 9. ISO 18113-1-2-3:2012
- 10. ISO 18153:2004
- 11. ISO 23640:2016

FABRICANTE LEGAL

Erba Lachema s.r.o. Karásek 1d, 621 33 Brno, CZ Tel: (781) 894-0800 Site: www.lachema.com

IMPORTADOR

Importador: Erba Diagnostics Brazil, Produção e Distribuição de Produtos Médicos Eireli

CNPJ: 32.190.515/0001-98

Rua Chopin, 33, Mezanino 3 Sala 4, Chácaras

Reunidas Santa Terezinha

CEP: 32.183-150 – Contagem / MG – Brasil

Telefone: +55 31 3261-6656

e-mail: t.vilhena@erbamannheim.com Responsável Técnico: Mário Henrique Pinto

CRF-MG 36189

SÍMBOLOS

IVD Produto Diagnóstico in Vitro

LOT Número de Lote

O produto cumpre com os requisitos da norma 98/79 EC (IVDD)

Fabricado por

BR REP Representante autorizado no Brasil

Data limite de utilização (aaaa-mm-dd ou mm/aaaa)

Consultar instrução de uso

Limite de Temperatura (conservar a)

Número de catálogo

Registro Anvisa: 81826160006

Código: HEH36003 Data: setembro/2019

Versão: 01